Wi fi 5 ггц настройка: Как включить Wi-Fi с частотой 5 ГГц на ноутбуке? |
Как включить Wi-Fi с частотой 5 ГГц на ноутбуке? |
Некоторые роутеры и ноутбуки поддерживают Wi-Fi с частотой 5 ГГц, и использование его означает более быстрое и улучшенное подключение к Интернету. Вот как узнать, поддерживает ли ваш ноутбук Wi-Fi с такой частотой и как его включить.
В целом, Wi-Fi простой в использовании и надежный. Вы выбираете название роутера, вводите пароль и забываете о нем. Как узнать свой пароль от сети Wi-Fi можете узнать в данной статье. Но когда вы хотите использовать частоту 5 ГГц, все может стать намного сложней. Мы объясним, как работать, если ваш ноутбук поддерживает ее и как включить частоту 5 ГГц.
Если вы не знаете наверняка, является ли ваш роутер двухдиапазонной моделью и имеет ли частоту 5 ГГц, сначала стоит проверить это. Нет смысла включать Wi-Fi с частотой 5 ГГц на вашем ноутбуке, если ваш роутер не поддерживает ее. Узнайте как улучшить скорость интернета в этой статье.
Самый простой способ сделать это — проверить инструкцию или войти в роутер и проверить настройки, доступные в разделе Wi-Fi. Фактически, некоторые роутеры имеют одинаковый SSID (сетевое имя) для 2,4 и 5 ГГц, поэтому его стоит изменить, чтобы вы могли легко идентифицировать каждую сеть с вашего ноутбука, телефона или планшета.
Какие стандартные Wi-Fi работают на частоте 5ГГц?
802.11a, 802.11n и 802.11ac все работают на частоте 5 ГГц, но с 802.11n не всегда. Это означает, что, поскольку большинство современных роутеров — это модели 802.11n, вам, нужно будет узнать, есть ли у вас частота 5 ГГц в дополнение к более часто используемой 2.4 ГГц.
Не все роутеры могут использовать обе частоты одновременно, поэтому, вполне возможно, что вы не сможете использовать 5 ГГц вообще. Причина в том, что если хотя бы одно из ваших устройств Wi-Fi не поддерживает 5 ГГц (многие из них не поддерживают), то оно не сможет общаться с вашим роутером, когда вы установите его на 5 ГГц.
Это не проблема для двухдиапазонных роутеров, которые могут одновременно запускать оба радиоприемника, но помните, что использование разных частот все равно может вызвать проблемы, поскольку устройства на разных частотах могут не поддерживать связь друг с другом. Например, iPhone 6 Plus, подключенный к BT Home Hub 5 через 802.11n на частоте 5 ГГц, не сможет видеть проигрыватель Google Nexus, который подключается к тому же роутеру на частоте 2,4 ГГц.
Как узнать, поддерживает ли ваш ноутбук частоту 5 ГГц?
К сожалению, нет простого способа получить эту информацию. Лучше всего открыть панель управления, перейти в диспетчер устройств и найти марку и модель Wi-Fi в вашем ноутбуке в разделе «Сетевые адаптеры».
Например, наш ноутбук имеет адаптер Qualcomm Atheros AR9285. Поиск в Интернете по этой модели показывает, что она работает только на частоте 2,4 ГГц. Если ваш адаптер поддерживает 802.11a, он, безусловно, поддерживает частоту 5 ГГц. То же самое касается 802.11ac.
Вы также можете щелкнуть правой кнопкой мыши по адаптеру в диспетчере устройств, нажать «Свойства», а затем перейти на вкладку «Дополнительно». Вы увидите список свойств, одно из которых должно содержать частоту 5 ГГц. Если вы не видите возможность включить или отключить 5 ГГц, ваш адаптер не поддерживает его или установлены неправильные драйверы.
Если вы действительно хотите использовать частоту 5 ГГц, потому что у вас слишком много соседних сетей с частотой 2,4 ГГц, вы можете купить USB-ключ Wi-Fi для своего ноутбука. Они недорогие — около 10-30 фунтов. И вы сможете обновить Wi-Fi вашего ноутбука, не открывая его.
1 2 голосов
Article Rating
Беспроводная сеть Wi-Fi 5 ГГц – Keenetic
Настройка беспроводной сети Wi-Fi 5 ГГц доступна в моделях Keenetic с поддержкой двухдиапазонной сети Wi-Fi 802.11n/ac (диапазон частот 2,4 + 5 ГГц).
NOTE: Важно! Не все мобильные устройства могут подключиться к беспроводной сети Wi-Fi 5 ГГц. Смогут только устройства (смартфон, планшет, ноутбук), которые поддерживают работу в этом диапазоне. Если ваше устройство не поддерживает работу в частотном диапазоне 5 ГГц, то оно сможет работать в сети Wi-Fi 2,4 ГГц. Информацию по настройке этой сети вы найдете в статье «Беспроводная сеть Wi-Fi 2,4 ГГц».
О преимуществах и недостатках каждого из диапазонов можно прочитать в статье «Отличия частотных диапазонов 2,4 ГГц и 5 ГГц».
При первом же включении интернет-центр Keenetic развертывает максимально защищенную по стандарту WPA2 двухдиапазонную беспроводную сеть Wi-Fi (2,4 + 5 ГГц) для ноутбуков, смартфонов, планшетов и прочих беспроводных устройств. Для гостевых устройств предусмотрена отдельная сеть Wi-Fi с выходом только в Интернет без доступа к домашней сети. Оптимальный рабочий канал выбирается автоматически на основе периодического анализа радиоэфира.
В большинстве случаев никаких дополнительных настроек основной точки доступа Wi-Fi производить не нужно. Достаточно знать имя и пароль для подключения к беспроводной сети интернет-центра (они указаны на наклейке, которая находится на нижней панели корпуса Keenetic).
При необходимости, вы можете самостоятельно настроить параметры беспроводной сети.
На странице «Домашняя сеть» в разделе «Беспроводная сеть Wi-Fi 5 ГГц» вы можете изменить имя беспроводной сети, пароль доступа к ней, а также другие параметры. Если вы хотите, чтобы беспроводная сеть работала только в определенные часы, настройте для нее расписание. Настройки беспроводной сети Wi-Fi 5 ГГц практически совпадают с настройками сети 2,4 ГГц, за исключением некоторых параметров.
Для изменения предустановленного имени сети и пароля, обратитесь к инструкции «Как изменить имя и пароль сети Wi-Fi?»
Для обеспечения защищенного беспроводного подключения в поле «Защита сети» по умолчанию установлено значение «WPA2-PSK» для обеспечения максимального уровня безопасности.
NOTE: Важно! Использование открытой (незащищенной) сети небезопасно.
В поле «Расписание работы» можно указать определенные часы для работы бесп
Как правильно настроить Wi-Fi / Хабр
Введение
Думаю, не ошибусь сильно, если у большинства из нас подключение к интернету выглядит следующим образом: есть некоторый довольно скоростной проводной канал до квартиры (сейчас уже и гигабит не редкость), а в квартире его встречает роутер, который раздаёт этот интернет клиентам, выдавая им «чёрный» ip и осуществляя трансляцию адресов.
Довольно часто наблюдается странная ситуация: при скоростном проводе, с роутера раздаётся совсем узенький wifi-канал, не загружающий и половины провода. При этом, хотя формально Wi-Fi, особенно в его ac-версии поддерживает какие-то огромные скорости, при проверке оказывается, что либо Wi-Fi подключается на меньшей скорости, либо подключается, но не выдаёт скорости на практике, либо теряет пакеты, либо всё вместе.
В какой-то момент и я столкнулся с похожей проблемой, и решил настроить свой Wi-Fi по-человечески. На удивление, это заняло примерно в 40 раз дольше, чем я ожидал. Вдобавок, как-то так случилось, что все инструкции по настройке Wi-Fi, которые я находил, сходились к одному из двух видов: в первом предлагали поставить роутер повыше и выпрямить антенну, для чтения второго же мне не хватало честного понимания алгоритмов пространственного мультиплексирования.
Собственно, эта заметка — это попытка заполнить пробел в инструкциях. Я сразу скажу, что задача до конца не решена, несмотря на приличный прогресс, стабильность подключения всё ещё могла бы быть лучше, поэтому я был бы рад услышать комментарии коллег по описанной тематике.
Глава 1:
Итак, постановка задачи
Wifi-роутер, предложенный провайдером, перестал справлять со своими обязанностями: наблюдаются длительные (30 секунд и больше) периоды, когда пинг до точки доступа не проходит, наблюдаются очень длительные (порядка часа) периоды, когда пинг до точки доступа достигает 3500 мс, бывают длительные периоды, когда скорость соединения с точкой доступа не превышает 200 кбит/сек.
Сканирование диапазона с помощью windows-утилиты inSSIDer выдаёт картинку, представленную в начале статьи. В округе наблюдается 44 Wifi SSID в диапазоне 2.4 ГГц и одна сеть в диапазоне 5.2 ГГц.
Инструменты решения
Самосборный компьютер Celeron 430, 2b Ram, SSD, безвентиляторный, две беспроводные сетевые карты на чипе Ralink rt2800pci, Slackware Linux 14.2, Hostapd из Git на сентябрь 2016 года.
Сборка роутера выходит за рамки данной заметки, хотя отмечу, что Celeron 430 хорошо показал себя в безвентиляторном режиме. Отмечу, что текущая конфигурация является последней, но не окончательной. Возможно, улучшения ещё осуществимы.
Решение
На самом деле, решение должно было бы, по хорошему, заключаться в запуске hostapd с минимальным изменениями настроек. Однако, опыт настолько хорошо подтвердил истинность поговорки «гладко было на бумаге, да забыли про овраги», что потребовалось написание этой статьи для систематизации знаний обо всех неочевидных подробностях. Также мне изначально хотелось бы избежать низкоуровневых подробностей для стройности изложения, но выяснилось, что это невозможно.
Глава 2
Немного теории
Частоты
Wi-Fi — это стандарт беспроводных сетей. С точки зрения OSI L2, точка доступа реализует концентратор типа switch, однако чаще всего она также совмещена с коммутатором уровня OSI L3 типа «роутер», что ведёт к изрядной путанице.
Нас же больше всего будет интересовать уровень OSI L1, то есть, собственно, та среда, в которой ходят пакеты.
Wi-Fi — это радиосистема. Как известно, радиосистема состоит из приёмника и передатчика. В Wi-Fi точка доступа и клиентское устройство осуществляют обе роли по очереди.
Wi-Fi-передатчик работает на некоторой частоте. Частоты эти занумерованы, и каждому номеру соответствует некоторая частота. Важно: несмотря на то, что для любого целого числа существует теоретическое соответствие этому числу некоторой частоты, Wi-Fi может работать только в ограниченных диапазонах частот (их три, 2.4 ГГц, 5.2 ГГц, 5.7 ГГц), и только на некоторых из номеров.
Полный список соответствий можно посмотреть в Wikipedia, нам же важно, что при настройке точки доступа, необходимо указать, на каком именно канале будет находиться несущая частота нашего сигнала.
Неочевидная деталь: не все Wi-Fi стандарты поддерживают все частоты.
Wi-Fi-стандартов есть два: a и b. «a» старше и работает в диапазоне 5ГГц, «b» новее и работает в диапазоне 2.4 ГГц. При этом b медленнее (11 mbit вместо 54 mbit, то есть, 1.2 мегабайта в секунду вместо 7 мегабайт в секунду), а диапазон 2.4 ГГц уже и вмещает меньше станций. Почему так — загадка. Вдвойне загадка, почему точек доступа стандарта а практически нет в природе.
(Картинка позаимствована из Википедии.)
(На самом деле, я немного лукавлю, потому что a поддерживает ещё частотный диапазон 3.7 ГГц. Однако, ни одного устройства, знающего что-нибудь про этот диапазон, мне не доводилось увидеть.)
Подождите, спросите вы, но есть же ещё 802.11g, n, ac — стандарты, и они-то, кажется, как раз должны побивать по скорости несчастные a и b.
Но нет, отвечу я вам. Стандарт g — это запоздалая попытка довести скорость b до скорости a, в диапазоне 2.4 ГГц. Но зачем, вы ответите мне, ты вообще вспоминал про b? Ответ, потому что несмотря на то, что диапазоны обоих b и g называются 2.4, на самом деле они чуть-чуть отличаются, и диапазон b на один канал длиннее.
Стандарты же n и ac вообще не имеют отношения к диапазонам — они регламентируют скорость, и только. Точка стандарта n может быть как «в базе» a (и работать на 5 Ггц), так и «в базе» b и работать на 2.4 ГГц. Про точку стандарта ac я не знаю, потому что не видел.
То есть, когда вы покупаете точку доступа n, нужно очень внимательно посмотреть, в каких диапазонах это n работает.
Важно, что в один момент времени один Wi-Fi чип может работать только в одном диапазоне. Если же ваша точка доступа утверждает, что может работать в двух одновременно, как например, делают бесплатные роутеры от популярных провайдерах Virgin или British Telecom, значит в ней на самом деле два чипа.
Ширина канала
На самом деле, я должен извиниться, потому что ранее сказал, что некий диапазон длиннее другого, не объяснив, что такое «длиннее». Вообще говоря, для передачи сигнала важна не только несущая частота, но и ширина кодированного потока. Ширина — это в какие частоты выше и ниже несущей может залезать имеющийся сигнал. Обычно (и к счастью, в Wi-Fi), каналы симметричные, с центром в несущей.
Так вот в Wi-Fi могут быть каналы шириной 10, 20, 22, 40, 80 и 160 МГц. При этом точек доступа с шириной канала в 10 МГц я никогда не видел.
Так вот, одним из самых удивительных свойств Wi-Fi является то, что несмотря на то, что каналы пронумерованы, они пересекаются. Причём не только с соседями а аж с каналами через 3 от себя. Иными словами, в диапазоне 2.4 ГГц только точки доступа, работающие на каналах 1, 6 и 11 — не пересекаются потоками шириной в 20 МГц. Иными словами, только три точки доступа могут работать рядом так, чтобы не мешать друг другу.
Что же такое точка доступа с каналом шириной 40 МГц? Ответ — а это точка доступа, которая занимает два канала (непересекающихся).
Вопрос: а сколько каналов шириной 80 и 160 МГц вмещается в диапазон 2.4 ГГц?
Ответ:Ни одного.
Вопрос, а на что влияет ширина канала? Точного ответа на этот вопрос я не знаю, проверить не смог.
Я знаю, что если сеть пересекается с другими сетями, стабильность соединения будет хуже. Ширина канала 40 МГц даёт больше пересечений и хуже соединение. Согласно стандарту, если вокруг точки есть работающие другие точки доступа, режим 40 МГц не должен включаться.
Верно ли, что вдвое большая ширина канала вдвое даёт большую пропускную способность?
Вроде бы, да, но проверить невозможно.
Вопрос: Если на моей точке доступа три антенны, верно ли, что она может создавать три пространственных потока и утроить скорость соединения?
Ответ: неизвестно. Может так оказаться, что из трёх антенн, две могут заниматься только отправкой, но не приёмом пакетов. И скорость сигнала будет несимметричная.
Вопрос: Так сколько же мегабит даёт одна антенна?
Ответ: Можно посмотреть вот здесь en.wikipedia.org/wiki/IEEE_802.11n-2009#Data_rates
Список странный и нелинейный.
Очевидно, самый важный параметр — это MCS-индекс, который именно и определяет скорость.
Вопрос: Откуда берутся такие странные скорости?
Ответ: Есть такая вещь как HT Capabilities. Это опциональные фишечки, которые могут чуть-чуть править сигнал. Фишечки бывают как очень полезные: SHORT-GI добавляет чуть-чуть скорости, около 20 мбит, LDPC, RX STBC, TX STBC добавляют стабильности (то есть должны уменьшать пинг и потерю пакетов). Впрочем, ваше железо может запросто их не поддерживать и при этом быть вполне «честным» 802.11n.
Мощность сигнала
Самый простой способ бороться с плохой связью — это вжарить больше мощности в передатчик. В Wi-Fi бывает мощность передачи до 30 dBm.
Глава 3
Решение задачи
Из всего вышеперечисленного винегрета, казалось бы, можно сделать следующий вывод: у вайфая можно реализовать два «режима» функционирования. «Улучшающий скорость» и «улучшающий качество».
Первый, казалось бы, должен говорить: бери самый незанятый канал, ширину канала 40 МГц, антенн побольше (желательно, 4), и добавляй побольше Capabilities.
Второй — убирай всё, кроме базового n-режима, включай мощность побольше, и включай те Capabilities, которые добавляют стабильности.
Вспоминая ещё раз пословицу про овраги, опишем, какие именно неровности местности ждут нас при попытке реализации планов 1 и 2.
Овраг нулевой
Хотя чипсеты семейства Ralink rt2x00 являются самыми популярными чипсетами с поддержкой стандарта n и встречаются как в картах высокого ценового диапазона (Cisco), так и диапазона бюджетного (TRENDNET), и более того, выглядят в lspci совершенно однаково, они могут обладать кардинально разным функционалом, в частности, поддерживать только диапазон 2.4, только диапазон 5ГГц, или поддерживать непонятно чем ограниченные части обеих диапазонов. В чём отличия — загадка. Также загадка, почему карта с тремя антеннами поддерживает только Rx STBC в два потока. И почему они обе не поддерживают LDPC.
Первый овраг
В диапазоне 2.4 есть только три непересекающихся канала. На эту тему мы уже говорил и я не буду повторяться.
Второй овраг
Не все каналы позволяют увеличивать ширину канала до 40 МГц, более того, на какую ширину канала согласится карта, зависит от чипсета карты, производителя карты, загрузки процессора и погоды на Марсе.
Третий, и самый большой овраг
Regulatory domain
Если вам не хватало для счастья того, что сами стандарты Wi-Fi представляют из себя знатный винегрет, то возрадуйтесь тому, что каждая страна мира стремится всякими разными способами Wi-Fi ущемить и ограничить. У нас в Великобритании всё ещё не так плохо, в отличие, скажем, от тех же США, где Wi-Fi спектр зарегулирован до невозможности.
Так вот, регуляторный домен может требовать ограничений на мощность передатчика, на возможность запустить на канале точку доступа, на допустимые технологии модуляции на канале, а также требовать некоторых технологий «умиротворения спектра», таких как DFS (динамический выбор частоты), детекция радара (которая ещё у каждого регдомена своя, скажем, в Америках почти всюду предлагаемая FCC, в Европе другая, ETSI), или auto-bw (я не знаю, что это такое). При этом со многими из них точка доступа не заводится.
Многие регуляторные домены просто запрещают некоторые частоты в принципе.
Задать регуляторный домен можно командой:
iw reg set NAME
Регуляторный домен можно не задавать, но тогда система будет руководствоваться объединением всех ограничений, то есть самым худшим вариантом из возможных.
По счастью, во-первых данные по регуляторным доменам есть в открытом доступе на сайте ядра:
git.kernel.org/cgit/linux/kernel/git/sforshee/wireless-regdb.git/tree/db.txt
И по ним можно искать. В принципе, вероятно, можно пропатчить ядро так, чтобы оно игнорировало регуляторный домен, но это надо пересобирать ядро или как минимум регуляторный демон crda.
По счастью, команда iw phy info
выводит все возможности нашего устройства, с учётом (!) регуляторного домена.
Итак, как же нам поправить состояние нашего Wi-Fi?
Для начала найдём страну, в которой не запрещён 13 канал. Путь хотя бы половина частоты будет пустой. Ну, таких стран довольно много, хотя некоторые, не запрещая его в принципе, однако запрещают на нём или режим высокой скорости n, или вообще создание точки доступа.
Но одного 13 канала нам мало — ведь мы хотим соотношение сигнал-шум побольше, а значит хотим запускать точку с силой сигнала 30. Ищем-ищем в CRDA, (2402 - 2482 @ 40), (30)
13 канал, ширина 40 МГц, сила сигнала 30. Есть такая страна, Новая Зеландия.
Но что это, на частоте 5 ГГц требуется DFS. Вообще, это теоретически, поддерживаемая конфигурация, но почему-то не работает.
Факультативная задачка, выполнимая людьми с повышенными социальными навыками:
Собрать подписи/движение в поддержку ускоренного перелицензирования Wi-Fi-диапазонов в ITU (ну, или хотя бы в вашей стране) в целом в сторону расширения. Это вполне реально, какие-нибудь депутаты (и кандидаты в депутаты), жаждущие политических очков, будут рады вам помочь.
Это овраг номер 4
Точка доступа может не заводиться при наличии DFS, без объяснения причин. Итак, какой же регуляторный домен нам выбрать?
Есть такая! Самая свободная страна в мире, Венесуэла. Её регуляторный домен — VE.
Полные 13 каналов диапазона 2.4, с мощностью 30 dBm, и сравнительно расслабленный 5ГГц диапазон.
Задача со звёздочкой. Если у вас в квартире совсем катастрофа, даже хуже, чем у меня, для вас есть отдельный, бонусный уровень.
Регуляторный домен «JP», Япония, позволяет делать уникальную вещь: запускать точку доступа на мифическом, 14 канале. Правда, только в режиме b. (Помните, я говорил, что между b и g всё-таки есть маленькие отличия?) Поэтому если у вас всё уж совсем плохо, то 14 канал может быть спасением. Но опять же, его физически поддерживает немного что клиентских устройств, что точек доступа. Да и максимальная скорость в 11 Мбит несколько обескураживает.
Копируем /etc/hostapd/hostapd.conf в два файла, hostapd.conf.trendnet24 и hostapd.conf.cisco57
Правим тривиальным образом /etc/rc.d/rc.hostapd, чтобы запускал две копии hostapd.
В первом указываем канал 13. Правда, ширину сигнала указываем 20 МГц (capability 40-INTOLERANT), потому что во-первых, так мы будем теоретически стабильнее, а во-вторых, «законопослушные» точки доступа просто не будут запускаться на 40 МГц из-за того, что забитый диапазон. Ставим capability TX-STBC, RX-STBC12. Плачем, что capabilities LDPC, RX-STBC123 не поддерживаются, а SHORT-GI-40 и SHORT-GI-20 хотя и поддерживаются и чуть-чуть улучшают скорость, но и чуть-чуть понижают стабильность, а значит, их убираем.
Правда, для любителей можно пропатчить hostapd, чтобы появилась опция force_ht40, но в моём случае это бессмысленно.
Если вы находитесь в странной ситуации, когда точки доступа то включаются то выключаются, то для особых гурманов можно пересобрать hostapd с опцией ACS_SURVEY, и тогда точка будет сама сначала сканировать диапазон и выбирать наименее «шумящий» канал. Более того, в теории она даже должна мочь переходить по собственному желанию с одного канала на другой. Мне, правда, эта опция не помогла, увы :-(.
Итак, наши две точки в одном корпусе готовы, запускаем сервис:
/etc/rc.d/rc.hostapd start
Точки успешно стартуют, но…
Но та, что работает на диапазоне 5.7 — не видна с планшета. Что за чертовщина?
Овраг номер 5
Проклятый регуляторный домен работает не только на точке доступа, но и на приёмном устройстве.
В частности, мой Microsoft Surface Pro 3, хотя и сделан для европейского рынка, в принципе не поддерживает диапазон 5.7. Пришлось переключиться в 5.2, но тут хоть завёлся режим 40 Мгц.
Овраг номер 6
Всё завелось. Точки стартовали, 2.4 показывает скорость 130 Мбит (был бы SHORT-GI, было бы 144.4). Почему карта с тремя антеннами поддерживает только 2 пространственных потока — загадка.
Овраг номер 7
Завести-то завелось, а иногда скачет пинг до 200, и всё тут.
А секрет вовсе не в точке доступа прячется. Дело в том, что по правилам Microsoft, драйвера Wi-Fi карты сами должны содержать ПО для поиска сетей и подключения к ним. Всё как в старые-добрые времена, когда 56к-модем должен был иметь при себе звонилку (которую мы все меняли на Shiva, потому что звонилка, идущая в штатной поставке Internet Explorer 3.0 была слишком уж ужасна) или ADSL-модем должен был иметь клиент PPPoE.
Но и о тех, у кого штатной утилиты нет (то есть, о всех на свете!), Microsoft позаботилась, сделав так называемую «автоконфигурацию Wi-Fi». Эта автоконфигурация жизнерадостно плюёт на то, что к сети мы уже подключены, и каждые Х секунд сканирует диапазон. В Windows 10 даже нет кнопки «обновить сети». Работает отлично, пока сетей вокруг две-три. А когда их 44, система замирает и выдаёт несколько секунд пинга 400.
«Автоконфигурацию» можно отключить командой:
netsh wlan set autoconfig enabled=no interface="???????????? ????"
pause
Лично я даже сделал себе на десктопе два батника «включить autoscan» и «выключить autoscan».
Да, прошу обратить внимание, что если у вас русский Windows, то скорее всего сетевой интерфейс будет иметь название на русском языке в кодировке IBM CP866.
Саммари
Я накатал довольно длинную простыню текста, и должен был бы завершить её кратким резюме самых важных вещей:
1. Точка доступа может работать только в одном диапазоне: 2.4 или 5.2 или 5.7. Выбирайте внимательно.
2. Лучший регуляторный домен — это VE.
3. Команды iw phy info, iw reg get покажут вам, что вы можете.
4. 13 канал обычно пустует.
5. ACS_SURVEY, ширина канала 20 МГц, TX-STBC, RX-STBC123 улучшат качество сигнала.
6. 40 МГц, больше антенн, SHORT-GI увеличат скорость.
7. hostapd -dddtK позволяет запустить hostapd в режиме отладки.
8. Для любителей можно пересобрать ядро и CRDA, увеличив мощность сигнала и сняв ограничения регуляторного домена.
9. Автопоиск Wi-Fi в Windows отключается командой netsh wlan set autoconfig enabled=no interface=»???????????? ????»
10. Microsoft Surface Pro 3 не поддерживает диапазон 5.7 ГГц.
Послесловие
Я большинство материалов, использованных при написании данного руководства, найдены либо в гугле, либо в манах к iw, hostapd, hostapd_cli.
На самом деле, проблема ТАК И НЕ РЕШИЛАСЬ. Временами пинг всё равно скачет до 400 и стоит на таком уровне, даже для «пустого» диапазона в 5.2 ГГц. Посему:
Ищу в Москве спектроанализатор Wi-Fi диапазона, укомплектованный оператором, с которым можно было бы проверить, в чём вообще проблема, и не заключается ли она в том, что неподалёку находится очень важное и секретное военное учреждение, о котором никто не знает.
Постскриптум
Wi-Fi работает на частотах от 2 ГГц до 60 ГГц (менее распространённые форматы). Это даёт нам длину волны от 150мм до 5мм. (Почему вообще мы меряем радио в частотах, а не в длинах волн? Так же удобнее!) У меня, в целом, возникает мысль, купить обои из металлической сетки в четверть длины волны (1 мм хватит) и сделать клетку Фарадея, чтобы гарантированно изолироваться от соседского Wi-Fi, да и заодно от всего другого радиооборудования, вроде DECT-телефонов, микроволновок и дорожных радаров (24 ГГц). Одна беда — будет блокировать и GSM/UMTS/LTE-телефоны, но можно выделить для них стационарную точку зарядки у окна.
Буду рад ответить на ваши вопросы в комментариях.
Выбор канала Wi-Fi 5 ГГц на роутере или точке доступа
В этой статье объясним, как выбрать беспроводной канал для Wi-Fi сети в стандарте 802.11ac/ax и 802.11n на частоте 5 ГГц. Более-менее продвинутые пользователи уже давно выучили, что роутеры, работающие на частоте 2.4 ГГц, используют 13 WiFi-каналов и их номера соответственно от 1 до 13. Однако, купив современный маршрутизатор или точку доступа, которые поддерживают 5 ГГц, пользователь сталкивается с необходимостью выбрать канал и для диапазона 5 ГГц, но в настройках он видит совсем незнакомые цифры.
Выбор канала Wi-Fi 5 ГГц для России
Для России и близлежащих стран доступно 4 канала Wi-Fi на частоте 5 ГГц:
36 40 44 48
Какой канал выбрать? — да любой из доступных четырех.
Роутер ASUS
- Зайдите в настройки роутера.
- Перейдите в раздел Беспроводная сеть 5ГГц или Wireless Settings 5GHz.
- Установите любой канал (например 36).
- Сохраните настройки. Многие маршрутизаторы при этом потребуют перезагрузки:
Выбор канала Wi-Fi 5 ГГц на роутере ASUS
Еще один пример — выбираем канал 5 ГГц на роутере TP-Link Archer C9
В принципе, если вы не используете WDS, можете оставить даже автоматический выбор канала в настройках роутера (AUTO).
P.S. Где-то, я читал, что 48 канал Wi-Fi лучше не использовать, но вменяемых аргументов почему конкретно, я не запомнил. В любом случае, вам будет достаточно и трех каналов, ведь сигнал Wi-Fi 5 ГГц затухает намного быстрее, чем сигнал 2.4 ГГц, и соседские сети не будут вам мешать, равно как и ваша 5-гигагерцовая Wi-Fi сеть не будет мешать им. Для того, чтобы убедиться в этом, возьмите смартфон, выйдите в подъезд и спуститесь на 1 этаж ниже или выше. Сигнал вашего домашнего Wi-Fi потеряется.
Каналы Wi-Fi 5 ГГц для США
Раз уж говорим про каналы 5 ГГц, то ради полноты картины расскажу вам и про другие каналы. Так, в настройках роутеров, выпущенных для использования в США, кроме каналов 36, 40, 44, 48 также могут быть доступны каналы 149, 153, 157, 161, 165. Если у вас получится установить на ваш роутер прошивку для региона USA, то в настройках Wireless 5GHz могут появиться эти каналы:
Выбор канала Wi-Fi 5 ГГц на роутере TP-Link Archer с прошивкой для США.
В следующей статье читайте о том, как узнать, какой канал использует ваш 5-гигагерцовый Wi-Fi роутер.
Почему ноутбук, смартфон, или планшет не видит Wi-Fi сеть 5GHz
Купил сегодня роутер Tp-link Archer C20i, что бы протестировать его, и написать несколько инструкций по настройке. Од двухдиапазонный, транслирует Wi-Fi сеть на частоте 2.4 GHz, и 5GHz. Включил его, и обнаружил, что ноутбук, и мой телефон не видит Wi-Fi сеть, которая транслируется на частоте 5 GHz. А вот планшет iPad mini 2 без проблем обнаруживал эту сеть, и подключался к ней. Новый телефон Meizu M2 Note так же без проблем увидел новую сеть.
Здесь все очень просто и понятно. Не все устройства могут подключаться к Wi-Fi сетям, которые работают на частоте 5 GHz. Встроенный в ноутбук адаптер просто не поддерживает эти сети. Так как двухдиапазонные маршрутизаторы появились относительно недавно, то только новые устройства могут работать в этих сетях. И если вы решили переходить на частоту 5 GHz, то нужно убедится, что ваши устройства ее поддерживают. Правда, двухдиапазонные роутеры транслируют две Wi-Fi сети, на 5 и 2.4 GHz. Поэтому, устройства которые не поддерживают новую частоту смогут подключаться к обычной беспроводной сети.
Если коротко о Wi-Fi сетях на частоте 5 GHz, то главное преимущество в том, что эта частота более свободна и на ней меньше помех. Просто уже есть места, где использовать 2.4 GHz просто невозможно, из-за большого количества сетей и помех. И даже смена канал не всегда спасает. Из минусов – меньшая дальность покрытия Wi-Fi сети, по сравнению с частотой 2.4 ГГц.
Вот решил сделать небольшой заметку, и объяснить, почему некоторые устройства не видят Wi-Fi сети на новой частоте, и как узнать, поддерживает ли ваш ноутбук, или другое устройство сети диапазона 5 ГГц.
Один важный момент. Если в характеристиках устройства указана поддержка Wi-Fi стандарта 802.11ac, то оно точно умеет работать с сетями в диапазоне 5 ГГц. Но если там указано только 802.11a/b/g/n, то это не значит, что нет поддержки новой частоты, так как частота 5 ГГц работает со стандартом 802.11n и 802.11ac.
Как узнать, поддерживает ли ноутбук Wi-Fi 5 ГГц?
Первым делом смотрите характеристики вашего ноутбука, желательно на официальном сайте. Если там указана поддержка 802.11ac, dual-band Wi-Fi, или же просто написано 5 ГГц, значит все хорошо.
Можно еще зайти в диспетчер устройств, и открыть вкладку Сетевые адаптеры, нажать правой кнопкой мыши на Wireless адаптер, и выбрать Свойства. Дальше, переходим на вкладку Дополнительно, и там должна быть указана информация по поддержке 5 GHz.
Сама надпись «Dual Band» в названии Wi-Fi адаптера говорит о том, что есть поддержка сетей в двух диапазонах.
У меня на ноутбуке, такой поддержки нет, и в диспетчере устройств нет по этому никакой информации.
А если вы включили двухдиапазонный роутер, и ноутбук видит только одну сеть, то понятное дело, что никакой поддержки сетей на частоте 5 ГГц нет.
Поддержка Wi-Fi 5GHz на смартфонах и планшетах
Что касается мобильных устройств, то вся информация по беспроводным модулям указана в характеристиках. Если там написано о поддержке 802.11ac, dual-band, или 5 GHz, то все поддерживается, и будет работать.
Что делать, если нет поддержки 5 GHz?
Просто подключайтесь к сетям на частоте 2.4 ГГц. А если вам просто необходимо перейти на новую частоту, а ноутбук ее не поддерживает, то в таком случае можно купить внешний USB Wi-Fi адаптер, который поддерживает частоту 5 ГГц. Подробнее об этих адаптерах я писал здесь. Правда, такое решение возможно только для ноутбуков, и стационарных компьютеров. Если у вас мобильное устройство, то придется смерится.
У новой частоты каких-то особых и серьезных плюсов нет. А переход на новые стандартны со временем произойдет автоматически, даже незаметно для нас. Как я уже писал выше, исключением являются места, где уже просто невозможно пользоваться беспроводным интернетом на частоте 2.4 ГГц, из-за большого количества помех.
Если устройство поддерживает сети на частоте 5 ГГц, но не видит их
Если вы уварены, что ваш адаптер, ноутбук, или мобильное устройство поддерживает сети на частоте 5 GHz, но не видит их, можно попробовать поэкспериментировать с настройками канала и ширины канала самой Wi-Fi сети. Сменить эти параметры можно в настройках маршрутизатора в разделе с настройками беспроводной сети. Попробуйте, например, поставить ширину канала 40 МГц, и какой-то статический канал из списка. Только не ставьте слишком высокий канал. Можете выставить 36-той. Или канал оставить на авто, а сменить только ширину канала. Я показал на примере роутера от TP-Link.
После смены настроек не забывайте сохранять параметры и перезагружать роутер.
Какой канал выбрать для Wifi 5 ГГц: характеристики режимов выбора каналов
Иногда при WiFi соединении могут возникнуть проблемы со связью, связанные с тем, что неправильно выбран канал для работы. В этом случае может помочь перезапуск роутера. Однако в некоторых случаях это не помогает. Для налаживания беспроводной связи нужно разобраться в том, что происходит, какой канал выбрать для WiFi, 5 ГГц или 2,4 ГГц, и что надо делать, чтобы указать его в настройках. Как это правильно сделать, будет более подробно рассказано в этой статье.
Что такое каналы WiFi
Роутер, передавая беспроводной сигнал, работает, используя определённые частоты. Вся частотная полоса разделена на несколько каналов, каждый из которых представляет собой часть первоначального промежутка. Маршрутизатор при работе использует один из доступных для него вариантов. Возможна ситуация, когда одним из них пользуются несколько человек. В этом случае они будут создавать помехи друг другу.
Важно! Различные каналы могут частично перекрываться между собой. В этом случае в каждый момент времени по каждому из них передачу сигнала может осуществлять только один источник. При этом скорость соединения станет значительно ниже.
Роутеры пользуются двумя диапазонами: 2,4 и 5 GHz. В первом случае по Европейским и российским стандартам предусмотрено 13 каналов, из которых 3 не имеют общих частот. Каждый из них имеет ширину 20 МГц. Во втором случае используется 33 частотных промежутка, из которых 19 не перекрываются.
Сравнение стандартов передачи данных по wifi на частотах 2,4 ГГц и 5 ГГц
Работа беспроводной связи определяется группой стандартов 802.11. В названиях используется цифровой код с буквенным индексом: a, b, g, n, ac. Первые четыре варианта из них наиболее распространены. Стандарт 802.11ac является самым новым из них. Он предусматривает работу только с диапазоном 5 ГГц.
Стандарты с индексами b, g, n работают только с частотным диапазоном 2,4 ГГц. Они более популярны и доступны по стоимости. Бытовые приборы, которые могут быть подключены к WiFi, также работают в этом частотном диапазоне.
Работа в этом диапазоне имеет такие достоинства:
- Совместимость с большинством устройств.
- Надёжная работа, в том числе при отсутствии непосредственной видимости.
Частота 5 ГГц применяется редко. Она улучшает качество связи, но ещё недостаточно распространена. Маршрутизаторы такого типа имеют обратную совместимость и могут работать в обоих диапазонах. В этом промежутке есть 19 непересекающихся каналов, в то время как на 2,4 ГГц их только 3.
Зона действия такой связи меньше, а предметы и стены создают более сильные помехи, чем для частоты 2,4 ГГц. Не все гаджеты способны работать в этом диапазоне.
Wifi 5 ГГц – каналы и частотные полосы
Полоса частот 5 ГГц имеет более сложную структуру по сравнению с 2,4 ГГц. Она занимает полосу частот с 5150 до 5825 МГц. Однако каналы на этом промежутке распределены неравномерно они занимают три сплошных участка: UNII-1,2,3. Для WiFi 5GHz частоты каналов распределены следующим образом. На первой полосе расположены каналы 36, 40, 44, 80. На второй — 52, 56, 60, 64, 100, 104, … , 136, 140. Третья включает в себя 149, 153, 157, 161.
Каждый из них соответствует определённой центральной частоте в разрешенном диапазоне 5 ГГц WiFi, которую можно определить по следующей формуле.
H = 5000 Мгц + (K * 5 Мгц)
Здесь использованы обозначения:
- K – номер канала;
- H – центральная частота.
Важно! Ширина составляет 20 МГц. При этом соседние не перекрываются. Ответ на вопрос о том, какой канал лучше выбрать для WiFi 5GHz простой — достаточно использовать любой, который не занят.
Как повысить скорость WiFi, выбрав правильный канал
На скорость беспроводного соединения могут влиять различные причины, одна из них — неправильный выбор канала WiFi роутера, 5 ГГц или 2,4 ГГц.
При пользовании домашним WiFi нужно принимать во внимание, что большинство пользователей среди соседей выбирают канал для роутера по умолчанию. Поэтому обычно получается так, что на одних из них находится много пользователей, а на других — мало или совсем нет. Чем больше маршрутизаторов пользуются одной и той же частотой, тем хуже у них становится связь.
В данной ситуации улучшить качество связи возможно, если выбрать тот частотный промежуток, где меньше всего помех. Для этого необходимо узнать, какие из них наиболее, а какие наименее используемы. Это можно сделать, если воспользоваться специализированным приложением.
Например, можно скачать из интернета и запустить программу Acrylic Wi-Fi Home. Она является бесплатной для личного применения.
После запуска можно увидеть следующее окно.
Здесь показана информация о тех беспроводных сетях, которые в этот момент доступны. С помощью приложения можно увидеть данные о всех имеющихся сетях, выбрав одну из них в нижней правой части окна, можно видеть основные рабочие характеристики этой WiFi сети. В нижней правой части экрана находится график, на котором содержится информация об уровне загруженности каналов.
Теперь нужно найти, какой из них более свободен, зайти в настройки роутера и установить его.
Выбор оптимального канала Wi-Fi на роутере
В большинстве случаев маршрутизатор способен в автоматическом режиме выбрать наиболее быстрый вариант. Однако он способен справляться не во всех ситуациях. Ситуация, когда необходимо самому выбрать нужный частотный промежуток, как правило, возникает в следующих случаях:
- В какой-то момент происходит резкое снижение скорости работы интернет-соединения.
- Имеется большое количество разных устройств, использующих WiFi соединение. Они используют каналы, которые выбирались случайным образом, и мешают друг другу.
- Если используется качественный и мощный роутер, но нет возможности к нему подключиться с расстояния нескольких метров.
Во всех перечисленных случаях наиболее вероятной причиной является то, что несколько устройств занимают одни и те же или перекрывающиеся частотные промежутки, что отрицательно сказывается на скорости доступа к интернету.
Для того, чтобы найти наименее загруженный канал, можно воспользоваться одним из специализированных приложений. Для этого существуют программы, работающие на компьютере, но можно, например, воспользоваться Android приложением. Для решения этой задачи подойдёт WiFi Analyzer.
После запуска можно будет увидеть список доступных вариантов. В показанном списке напротив каждого из них будет показан ряд звёздочек. Чем их больше, тем выше будет качество связи при работе на этом канале.
Характеристика режимов выбора каналов
Для улучшения качества работы необходимо выбрать наиболее подходящую частоту. Это можно сделать с помощью специализированных приложений. Однако в большинстве современных маршрутизаторов предусмотрен режим автоматического выбора. Обычно эта процедура осуществляется при включении роутера.
При вводе настроек маршрутизатора важно знать, какую страну выбрать в настройках WiFi. При использовании диапазона 2,4 ГГц используется полоса частот с 2401 до 2483 МГц. Для европейских стран и России этот промежуток разбит на 13 каналов. В Соединённых Штатах Америки установлено другое разделение частот. Здесь имеется только 11 частотных промежутков. Если неправильно установить страну, то может оказаться так, что вместо 13 (в Европе) будут доступны только 11 частотных каналов (в США).
При выборе подходящих частотных промежутков можно воспользоваться приложением inSSIDer. После того, как оно будет скачано и установлено, его можно запустить. После этого появится экран приложения.
В верхней части можно увидеть список действующих WiFi каналов и их параметры. В одном из столбцов можно увидеть, какие из них используются. В нижней левой части показан график, на котором видна загрузка различных частот в диапазоне 2,4 ГГц. Справа от него аналогичное окно для 5 ГГц. На основании полученных данных необходимо выбрать тот, нагрузка на котором минимальна, и переключить роутер на его использование.
Важно! Хотя в маршрутизаторе может использоваться автоматический выбор, тем не менее не всегда удобно им пользоваться. В условиях, когда имеется много различных источников WiFi сигнала, более эффективным будет выбрать подходящий частотный промежуток и установить его вручную в настройках роутера.
Однако прежде, чем прибегать к ручной настройке, имеет смысл попробовать другие, более простые способы решить проблему:
- перезагрузить маршрутизатор;
- сбросить настройки и установить заводские;
- переставить роутер на другое, более подходящее место;
- изменить способ используемого шифрования в настройках маршрутизатора.
Иногда с помощью одного из этих способов удаётся решить проблему с медленным соединением.
Выбор свободного беспроводного канала на роутере
Если понятно, какой канал для роутера надо устанавливать, то необходимо соответствующим образом изменить настройки маршрутизатора. В большинстве случаев по умолчанию установлен автоматический выбор. Далее рассмотрена ситуация, когда устройству нужно разрешать для работы только конкретный канал.
D-Link
Здесь, войдя в настройки, надо перейти в раздел «Wi-Fi — Основные настройки». В строке «Канал» указывают необходимый номер.
TP-Link
Для того, чтобы внести необходимые изменения, нужно войти в настройки роутера и выбрать страницу основных настроек.
Нужно выбрать строку «Канал». Там предусмотрен выпадающий список, в котором надо указать нужный номер. Затем внесённые изменения нужно подтвердить и выйти из настроек.
Asus
Для того, чтобы получить доступ к настройкам роутера ASUS, необходимо в браузере указать адрес http://192.168.1.1. В разделе «Беспроводная сеть», нужно перейти на вкладку «Общие» и найти строку «Канал». В выпадающем списке выбирают нужный номер.
После этого нужно подтвердить изменения нажатием кнопки «Применить».
ZyXEL
При входе в настройки нужно обратить внимание на нижнее меню. Требуется выбрать строчку «WiFi», а затем перейти во вкладку «Точка доступа». В строке «Канал» в выпадающем списке выбирают для ZyXEL Keenetic необходимый номер канала.
Xiaomi
Для установки нужного канала в настройках нужно найти раздел «Настройки WiFi». В строке «Канал» указывают номер того, который нужен. После этого подтверждают введённые данные и выходят из настроек маршрутизатора Xiaomi.
Netgear
В настройках нужно перейти в «Расширенный режим». В строке «Канал» в выпадающем списке выбирают нужный номер. Затем необходимо подтвердить сделанные изменения и выйти из настроек маршрутизатора.
Для того, чтобы настройки вступили в силу, нужно сделать перезапуск маршрутизатора.
При работе роутера важное значение для качества связи имеет правильный выбор канала. Если соединение ухудшилось, нужно определить загрузку различных частотных полос и выбрать наиболее подходящую.
Подгорнов Илья ВладимировичВсё статьи нашего сайта проходят аудит технического консультанта. Если у Вас остались вопросы, Вы всегда их можете задать на его странице.
Похожие статьи
-
Ширина канала Wi-Fi: что это такое, разница между 20…
Выбор оптимальной ширины канала Wi—Fi для домашнего использования. … Какую ширину канала вай-фай лучше выбрать для домашнего Интернета 20 или 40. … Так, для стандарта 2,4 ГГц канал 5 с центральной частотой 2432 МГц (2.432 ГГЦ) нижняя граница полосы установлена в 2421 МГц, а верхняя — 2,443 МГц.
-
Wifi 5 ГГц: диапазон частот роутера, как подключиться…
Режимы работы WiFi роутера: b, g, n, какой выбрать и как настроить. Сам термин WiFi является фирменным брендом … Полоса 5 ГГц имеет здесь существенное преимущество. Во-первых, сама технология намного лучше: каналы внутри этой полосы независимы, не мешают друг другу и не создают помех. Их также…
-
Какой роутер с 5 ГГц выбрать для дома: радиус действия…
Как выбрать самый мощный вай-фай роутер с большим радиусом действия для квартиры. … Стоит подробнее рассмотреть роутер 5 ГГц, какой выбрать из … Для того, чтобы всегда оставаться на связи, водители ищут автомобильный роутер WiFi. Предлагаются интересные… Настройки Wi—Fi Как узнать поддерживает…
Настройка 2 wi-fi сетей (в 2.4 и 5 ГГц) на примере роутера TP-Link Archer C5
1. Подготовка к настройке
Если ваш роутер поддерживает работу и диапазоне 5 ГГц, но одно из ваших устройств поддерживает только 2.4 ГГц – есть возможность создать сразу 2 беспроводных сети, одна из которых будет работать в 2.4 ГГц, а вторая в 5 ГГц.
Желательно выполнять настройки на компьютере, который подключается к роутеру по кабелю.
Если такой возможности нет – выполните настройки на любом из устройств, которые подключаются у роутера по беспроводной сети
Откройте браузер (Opera, Google Chrome, Safari, Internet Explorer, Mozilla Firefox), в адресную строку введите: 192.168.0.1 (или tplinkwifi.net)
Для авторизации введите следующие данные (если вы их не меняли):
- Имя пользователя: admin
- Пароль: admin
Все данные для входа на интерфейс вы всегда можете уточнить на наклейке на снизу роутера.
Слева в меню выберите Dual Band Selection, выбираем первое значение Concurrently with 2.4GHz and 5GHz (802.11a/b/g/n/ac).
2. Настройка сети 2,4 ГГц
Далее переходим на вкладку Wireless 2.4GHz, затем Wireless Settings.
- В поле Wireless Network Name введите латинскими буквами и/или цифрами название вашей сети.
- Значение Channel установите Auto.
- Значение Mode установите 11 b/g/n mixed.
- Значение Channel Width установите Auto.
- Внизу страницы необходимо нажать на кнопку Save.
Если пропадет соединение с сетью – подождите около минуты и подключитесь к сети с вашим названием.
Далее переходим на подпункт Wireless 2.4GHz,Wireless Security.
- Выбираем точкой пункт WPA-Personal/WPA2-Personal (recommanded).
- Значение Version выберите Automatic.
- Значение Encryption выберите Automatic.
- В поле PSK Password введите латинскими буквами и/или цифрами пароль для вашей WI-FI сети. Должно быть не менее 8 символов.
- Внизу страницы нажмите на кнопку Save.
3. Настройка сети 5 ГГц
Далее переходим на вкладку Wireless 5GHz, затем Wireless Settings.
- Далее переходим на вкладку Wireless 5GHz, затем Wireless Settings.
- В поле Wireless Network Name введите латинскими буквами и/или цифрами название вашей сети. ВАЖНО! Название должно отличаться от названия сети 2.4 ГГЦ!
- Значение Channel установите Auto.
- Значение Mode установите 11 a/n/ac mixed.
- Внизу страницы необходимо нажать на кнопку Save. Если пропадет соединение с сетью – подождите около минуты и подключитесь к сети с вашим названием.
Далее переходим на подпункт Wireless 5GHz, Wireless Security.
- Выбираем точкой пункт WPA-Personal/WPA2-Personal (recommanded).
- Значение Version выберите Automatic.
- Значение Encryption выберите Automatic.
- В поле PSK Password введите латинскими буквами и/или цифрами пароль для вашей WI-FI сети. Должно быть не менее 8 символов.
- Внизу страницы нажмите на кнопку Save.
Перезагрузите роутер и подключитесь к вашей сети.
WiFi диапазон 5 ГГц и широкие каналы
В WiFi 5 ГГц больше каналов и меньше помех, и то, и другое важно для быстрой беспроводной связи. Пропускную способность можно даже многократно увеличить за счет объединения каналов.
5 ГГц был введен в 802.11a, но радиоприемники были дорогими, и эта полоса не приобрела популярности. 802.11n был определен как для диапазонов 2,4 ГГц, так и для 5 ГГц, что, наконец, привело к использованию 5 ГГц. Последняя версия 802.11ac определена только для 5 ГГц, но все устройства по-прежнему поддерживают 802.11n и большинство также на 2,4 ГГц
каналов
Диапазон 5 ГГц делится на каналы 5 МГц, например диапазон 2,4 ГГц. К счастью, используется только каждый четвертый канал (36, 40, 44…), что обеспечивает фактическую ширину канала 20 МГц без проблем с перекрытием 2,4 ГГц. Большинство устройств даже не могут быть настроены на промежуточные каналы. Целая частота 5–6 ГГц недоступна, так как есть некоторые запрещенные каналы, а некоторые каналы имеют особые ограничения.
Каналы 5 ГГц
Первоначально в U были доступны только четыре нижних канала.S. где они называются UNII-I. Позже стали доступны другие каналы, но у них есть несколько ограничений на их использование в США
.
В Европе (или в юрисдикции ETSI) каналы 36–64 ограничены для использования только внутри помещений. Максимальная мощность передачи составляет 200 мВт (23 дБм), что больше 100 мВт (20 дБм), разрешенных для 2,4 ГГц, но все же не полностью компенсирует ослабление на 6 дБ из-за более высокой частоты. При использовании точки доступа максимальная мощность передачи практически не имеет значения, поскольку типичные пользовательские устройства имеют меньшую мощность передачи.В WiFi соединение всегда двунаправленное, поэтому нет смысла получать точку доступа, если вы не можете отправить ответ. Обычным значением по умолчанию для точек доступа является максимальная мощность, что означает, что сигнал 2,4 ГГц будет приниматься на 3 дБм сильнее, что, в свою очередь, заставит большинство устройств выбрать сигнал 2,4 ГГц вместо 5 ГГц.
На каналах 100–140 максимальная мощность передачи составляет 1 Вт (30 дБм), и каналы также можно использовать на открытом воздухе. При использовании точки доступа 30 дБм не имеет значения, но для соединений точка-точка это позволяет устанавливать соединения на большие расстояния (от 10 км до 50 км или даже больше).Метеорологические радары используют каналы 120–128, и точки доступа должны им уступать. При запуске точки доступа будут прослушивать радиолокационные сигналы в течение 10 минут перед передачей. На других каналах DFS 52–140 эта задержка запуска составляет одну минуту. Если точка доступа обнаруживает сигнал радара, она автоматически переключает канал. Большинство точек доступа перестраховываются и выбирают канал 36–48, отличный от DFS, что может привести к перекрытию в использовании каналов.
Верхние каналы 149–165 находятся на каждом четвертом нечетном канале. В Европе они могут использоваться в соответствии со спецификацией устройств ближнего действия (SRD) для передачи до 25 мВт (14 дБм), но большинство устройств не поддерживают эти каналы.Для точки доступа достаточно 14 дБм, нет DFS или других ограничений, но перед развертыванием необходимо протестировать небольшую поддержку клиентов.
Покрытие и размер ячейки
Длина волны 5 ГГц составляет половину 2,4 ГГц, что означает большее затухание. 2,4 ГГц будет приниматься на 6 дБм сильнее или в четыре раза по сравнению с сигналом 5 ГГц. Таким образом, точка доступа с частотой 5 ГГц покрывает меньшую площадь на открытом пространстве и не проникает сквозь стены, как 2,4 ГГц. Из-за более сильного сигнала многие устройства будут скорее ассоциировать с 2.Точка доступа 4GHz. Самое простое решение — снизить мощность передачи 2,4 ГГц AP на 6–7 дБм.
Более высокое затухание и меньшее проникновение можно превратить в преимущество для уменьшения размера ячейки точки доступа. Когда точка доступа покрывает меньшую площадь, меньше пользователей будет конкурировать за эфирное время, что приведет к более быстрой передаче данных. Вам понадобится больше точек доступа, чтобы покрыть территорию, но меньший размер ячейки является ключом к высокопроизводительному Wi-Fi.
Широкие каналы
802.11n представил концепцию объединения каналов.Объединение двух каналов 20 МГц даст более чем вдвое большую полосу пропускания, поскольку нет необходимости в изоляционном промежутке между каналами. В 802.11n вы также можете комбинировать каналы на частоте 2,4 ГГц, но доступных каналов действительно недостаточно. На 5 ГГц объединение каналов действительно полезно, и каналы 40 МГц в настоящее время используются по умолчанию для большинства точек доступа.
Комбинированные каналы необходимо учитывать при планировании каналов. Если вы разместите две соседние точки доступа на каналах 36 и 40 и включите каналы 40 МГц, точки доступа будут сменяться.Точка доступа на канале 36 будет использовать каналы 36–43, а другая — 40–47. Из-за перекрытия они не могут передавать или принимать одновременно. Вы должны разместить их на каналах 36 и 44, чтобы учесть это. В стандарте каналы 40 МГц пронумерованы 38, 46, 54… во избежание перекрытия, но большинство пользовательских интерфейсов, похоже, используют нумерацию 20 МГц.
802.11ac представил каналы 80 МГц и 160 МГц. У них также есть свои собственные номера каналов, потому что сверхширокие каналы очень легко настроить для перекрытия.Использование таких широких каналов делает переполненным даже диапазон 5 ГГц. Еще одна проблема — время ожидания доступности канала. Если поблизости есть другие точки доступа, наша точка доступа не сможет передавать данные до тех пор, пока все каналы не перестанут работать одновременно. 802.11ac обеспечивает динамическую ширину канала, которая устанавливает максимальное значение, и точка доступа выбирает используемую ширину канала в зависимости от среды. Для использования сверхшироких каналов также требуется поддержка пользовательского устройства. Каналы 160 МГц — это функция Волны 2, поэтому на данный момент нет большой поддержки.На самом деле вы не можете составить план каналов только с двумя каналами, поэтому 160 МГц следует зарезервировать для соединений точка-точка, где они действительно полезны.
Максимальная мощность передачи, установленная властями, предназначена для всей передачи. Максимальные значения рассчитаны для каналов 20 МГц. Максимальное значение следует уменьшить вдвое (-3 дБм) для 40 МГц, разделить на четыре части (-6 дБм) для 80 МГц и только одну восьмую (-9 дБм) для 160 МГц. Обычно это не имеет значения для точки доступа, поскольку максимальные значения использовать в любом случае не следует.В двухточечных каналах это имеет значение, и иногда вам нужно сосредоточить мощность на меньшем количестве каналов, чтобы получить стабильную связь. Двойной канал с той же номинальной мощностью передачи также потребляет вдвое больше электроэнергии, что является важным фактором для мобильных устройств. Если широкий канал соответственно увеличит скорость передачи (то есть сократит время передачи), то это отменит увеличение потребления энергии. На практике потребление энергии несколько возрастет из-за повторных передач.
Рекомендации
Совместимые пользовательские устройства должны быть настроены на частоту 5 ГГц, так как они имеют большую пропускную способность и меньше помех. Самый простой способ — уменьшить мощность передачи 2,4 ГГц до минимума или полностью отключить его.
каналов 40 МГц на 5 ГГц хорошо поддерживаются и увеличивают полосу пропускания. Вам просто нужно спланировать использование канала, чтобы не было перекрытий. Даже если исходный план каналов идеален, DFS может вызвать неожиданные переключения каналов, вызывающие перекрытия.Если у вас тихая среда и ваши устройства их поддерживают, вы можете использовать каналы 80 МГц. Одним из примеров рассмотрения является тот факт, что самые низкие 80 МГц будут охватывать все каналы, не относящиеся к DFS. Если вы хотите использовать более широкие каналы, вам придется жить с ограничениями DFS. Не используйте каналы 160 МГц, за исключением двухточечных или других особых случаев.
Статьи по теме:
.
каналов Wi-Fi, диапазоны частот и полоса пропускания »Электроника
Понимание диапазонов, каналов и пропускной способности Wi-Fi может повысить производительность профессиональных беспроводных локальных сетей, а также домашних локальных сетей с маршрутизатором, повторителями Wi-Fi и т. Д.
WiFi IEEE 802.11 Включает:
Wi-Fi IEEE 802.11: введение
стандарты
Поколения Wi-Fi Alliance
Безопасность
Как оставаться в безопасности в общедоступном Wi-Fi
Диапазоны Wi-Fi
Расположение и зона покрытия маршрутизатора
Как добиться максимальной производительности Wi-Fi
Как купить лучший Wi-Fi роутер
Бустеры, ретрансляторы и ретрансляторы Wi-Fi
Проводной Wi-Fi и удлинитель Powerline
Wi-Fi IEEE 802.11 используется очень многими устройствами, от смартфонов до ноутбуков и планшетов до удаленных датчиков, приводов телевизоров и многих других. Он используется как основной канал беспроводной связи в беспроводных локальных сетях, а также в небольших домашних сетях WLAN.
В пределах радиоспектра есть несколько полос частот, которые используются для Wi-Fi, и в них есть много каналов, которые обозначены номерами, чтобы их можно было идентифицировать.
Хотя многие каналы Wi-Fi и диапазоны Wi-Fi обычно выбираются автоматически домашними маршрутизаторами Wi-Fi, для больших беспроводных локальных сетей и систем часто необходимо планировать используемые частоты.При использовании множества точек доступа Wi-Fi вокруг большого здания или территории необходимо планирование частот, чтобы обеспечить максимальную производительность беспроводной локальной сети.
Даже для домашних систем, где используются расширители Wi-Fi и повторители Wi-Fi, полезно понимать, какие частоты доступны и как их лучше всего использовать. Используя некоторые простые настройки в маршрутизаторе Wi-Fi и беспроводных расширителях, можно улучшить скорость установки сети Wi-Fi.
диапазоны ISM
Wi-Fi предназначен для использования в нелицензируемом спектре — ISM или промышленном, научном и медицинском диапазонах.Эти диапазоны согласованы на международном уровне, и в отличие от большинства других диапазонов, они могут использоваться без лицензии на передачу. Это дает каждому доступ к их свободному использованию.
Диапазоны ISM используются не только Wi-Fi, но и всем, от микроволновых печей до многих других форм беспроводной связи и многих промышленных, научных и медицинских целей.
Хотя диапазоны ISM доступны во всем мире, в некоторых странах могут быть некоторые различия и ограничения.
Основные диапазоны, используемые для передачи Wi-Fi, указаны в таблице ниже:
Обзор основных диапазонов ISM | ||
---|---|---|
Нижняя частота МГц | Верхняя частота МГц | Комментарии |
2400 | 2500 | Этот спектр, который часто называют диапазоном 2,4 ГГц, является наиболее широко используемым из диапазонов, доступных для Wi-Fi. Используется 802.11b, g и n.Он может нести максимум три неперекрывающихся канала. Этот диапазон широко используется во многих других нелицензионных устройствах, включая микроволновые печи, Bluetooth и т. Д. |
5725 | 5875 | Эта полоса Wi-Fi 5 ГГц или, точнее, полоса 5,8 ГГц обеспечивает дополнительную полосу пропускания, а при более высокой частоте затраты на оборудование немного выше, хотя использование и, следовательно, меньше помех. Его можно использовать в 802.11a. & n. Он может передавать до 23 неперекрывающихся каналов, но дает меньший диапазон, чем 2.4 ГГц. Многие предпочитают Wi-Fi на частоте 5 ГГц из-за количества каналов и доступной полосы пропускания. Также меньше других пользователей этого диапазона. |
Можно видеть, что полоса 2,4 ГГц широко используется для других приложений, включая микроволновые печи (в результате поглощения сигнала водой), а также Bluetooth и многие другие приложения беспроводной связи. Иногда использование других диапазонов может улучшить производительность WLAN в результате более низких уровней помех.
Системы 802.11 и диапазоны частот
Используется несколько различных вариантов 802.11. Различные варианты 802.11 используют разные диапазоны. Сводка диапазонов, используемых системами 802.11, приведена ниже:
802.11 Типы и диапазоны частот | ||
---|---|---|
IEEE 802.11 вариант | Используемые полосы частот | Комментарии |
802.11a | 5 ГГц | Подробнее о 802.11а |
802.11b | 2,4 ГГц | Подробнее о 802.11b |
802.11 г | 2,4 ГГц | Подробнее о 802.11g |
802.11n | 2,4 и 5 ГГц | Подробнее о 802.11n |
802.11ac | Ниже 6 ГГц | Подробнее о 802.11ac |
802.11ad | до 60 ГГц | Подробнее о 802.11ad |
802.11af | Пустое пространство ТВ (ниже 1 ГГц) | Подробнее о 802.11af |
802.11ah | 700 МГц, 860 МГц, 902 МГц и т. Д. Полосы ISM зависят от страны и распределения | Подробнее о 802.11ah |
802.11ax | Подробнее о 802.11ax |
2,4 ГГц 802.11 каналов
Всего имеется четырнадцать каналов, определенных для использования установками и устройствами Wi-Fi в диапазоне ISM 2,4 ГГц. Не все каналы Wi-Fi разрешены во всех странах: 11 разрешены FCC и используются в том, что часто называется североамериканским доменом, а 13 разрешены в Европе, где каналы были определены ETSI. Каналы WLAN / Wi-Fi разнесены на 5 МГц друг от друга (за исключением 12 МГц между двумя последними каналами).
Стандарты Wi-Fi 802.11 определяют полосу пропускания 22 МГц, а каналы находятся с шагом 5 МГц. Часто для каналов Wi-Fi приводятся номинальные значения 0f 20 МГц. Полоса пропускания 20/22 МГц и разделение каналов 5 МГц означает, что соседние каналы перекрываются, и сигналы на соседних каналах будут мешать друг другу.
Пропускная способность канала Wi-Fi 22 МГц соответствует всем стандартам, хотя стандарт беспроводной локальной сети 802.11b может работать на различных скоростях: 1, 2, 5,5 или 11 Мбит / с и более новый 802.Стандарт 11g может работать на скорости до 54 Мбит / с. Различия проявляются в используемой схеме модуляции RF, но каналы WLAN идентичны для всех применимых стандартов 802.11.
При использовании 802.11 для обеспечения сетей Wi-Fi и подключения для офисов, при установке точек доступа Wi-Fi или для любых приложений WLAN необходимо убедиться, что параметры, такие как каналы, установлены правильно, чтобы обеспечить требуемую производительность. В наши дни на большинстве маршрутизаторов Wi-Fi это устанавливается автоматически, но для некоторых более крупных приложений необходимо настроить каналы вручную или, по крайней мере, под централизованным управлением.
Маршрутизаторы
Wi-Fi часто используют два диапазона для обеспечения двухдиапазонного Wi-Fi, диапазон 2,4 ГГц является одним из основных и чаще всего используется с диапазоном Wi-Fi 5 ГГц.
Частоты канала Wi-Fi 2,4 ГГц
В таблице ниже представлены частоты для четырнадцати каналов Wi-Fi 802.11, доступных по всему миру. Не все эти каналы доступны для установки Wi-Fi во всех странах.
Номера каналов и частоты диапазона 2,4 ГГц | |||
---|---|---|---|
Номер канала | Нижняя частота МГц | Центральная частота МГц | Верхняя частота МГц |
1 | 2401 | 2412 | 2423 |
2 | 2406 | 2417 | 2428 |
3 | 2411 | 2422 | 2433 |
4 | 2416 | 2427 | 2438 |
5 | 2421 | 2432 | 2443 |
6 | 2426 | 2437 | 2448 |
7 | 2431 | 2442 | 2453 |
8 | 2436 | 2447 | 2458 |
9 | 2441 | 2452 | 2463 |
10 | 2446 | 2457 | 2468 |
11 | 2451 | 2462 | 2473 |
12 | 2456 | 2467 | 2478 |
13 | 2461 | 2472 | 2483 |
14 | 2473 | 2484 | 2495 |
2.Перекрытие и выбор каналов WiFi 4 ГГц
Каналы, используемые для WiFi, в большинстве случаев разделены на 5 МГц, но имеют полосу пропускания 22 МГц. В результате каналы Wi-Fi перекрываются, и можно увидеть, что можно найти максимум три неперекрывающихся.
Следовательно, если есть смежные части оборудования WLAN, например, в сети Wi-Fi, состоящей из нескольких точек доступа, которые должны работать на каналах, не создающих помехи, существует только возможность трех.Ниже приведены пять комбинаций доступных неперекрывающихся каналов:
2,4 ГГц Wi-Fi каналы, частоты и т. Д. С указанием перекрытия, и какие из них можно использовать как наборы.
Из диаграммы выше видно, что каналы Wi-Fi 1, 6, 11 или 2, 7, 12 или 3, 8, 13 или 4, 9, 14 (если разрешены) или 5, 10 (и возможно 14, если разрешено) могут использоваться вместе как наборы. Часто маршрутизаторы WiFi настроены на канал 6 по умолчанию, и поэтому набор каналов 1, 6 и 11, вероятно, является наиболее широко используемым.
Поскольку некоторая энергия распространяется дальше за пределы номинальной полосы пропускания, если используются только два канала, то чем дальше друг от друга, тем лучше производительность.
Было обнаружено, что при наличии помех пропускная способность установки Wi-Fi снижается. Таким образом, стоит снизить уровень помех, чтобы улучшить общую производительность оборудования WLAN.
При использовании IEEE 802.11n есть возможность использовать полосу пропускания сигнала 20 МГц или 40 МГц.Когда полоса пропускания 40 МГц используется для увеличения пропускной способности данных, это, очевидно, уменьшает количество каналов, которые можно использовать.
IEEE 802.11n 2,4 ГГц Wi-Fi 40 МГц каналы, частоты и номера каналов. На диаграмме выше показаны сигналы 802.11n 40 МГц. Эти сигналы обозначаются соответствующими номерами центральных каналов.
Доступность канала Wi-Fi 2,4 ГГц
Ввиду различий в распределении спектра по всему миру и различных требований регулирующих органов не все каналы WLAN доступны в каждой стране.В таблице ниже представлены общие сведения о доступности различных каналов Wi-Fi в разных частях мира.
Доступность канала Wi-Fi 2,4 ГГц | |||
---|---|---|---|
Номер канала | Европа (ETSI) | Северная Америка (FCC) | Япония |
1 | ✔ | ✔ | ✔ |
2 | ✔ | ✔ | ✔ |
3 | ✔ | ✔ | ✔ |
4 | ✔ | ✔ | ✔ |
5 | ✔ | ✔ | ✔ |
6 | ✔ | ✔ | ✔ |
7 | ✔ | ✔ | ✔ |
8 | ✔ | ✔ | ✔ |
9 | ✔ | ✔ | ✔ |
10 | ✔ | ✔ | ✔ |
11 | ✔ | ✔ | ✔ |
12 | ✔ | № | ✔ |
13 | ✔ | № | ✔ |
14 | № | № | 802.11b только |
Эта диаграмма представляет собой только общий вид, и в разных странах могут быть различия. Например, в некоторых странах европейской зоны в Испании есть ограничения на каналы Wi-Fi, которые могут использоваться (Франция: каналы 10–13 и Испания каналы 10 и 11), использование Wi-Fi и не разрешают использование многих каналов, которые могут считаться доступным, хотя позиция всегда может измениться.
Диапазон WiFi 3,6 ГГц
Эта полоса частот разрешена для использования только в США по схеме, известной как 802.11г. Здесь мощные станции могут использоваться для транзитных соединений Wi-Fi в сетях передачи данных и т. Д.
Каналы для этих сетевых систем Wi-Fi подробно описаны ниже.
Диапазон WiFi 3,6 ГГц | ||||
---|---|---|---|---|
Номер канала | Частота (МГц) | Полоса пропускания 5 МГц | Ширина полосы 10 МГц | Полоса пропускания 20 МГц |
131 | 3657,5 | ✔ | ||
132 | 36622.5 | ✔ | ||
132 | 3660,0 | ✔ | ||
133 | 3667,5 | ✔ | ||
133 | 3665,0 | ✔ | ||
134 | 3672,5 | ✔ | ||
134 | 3670.0 | ✔ | ||
135 | 3677,5 | ✔ | ||
136 | 3682,5 | ✔ | ||
136 | 3680,0 | ✔ | ||
137 | 3687,5 | ✔ | ||
137 | 3685.0 | ✔ | ||
138 | 3689,5 | ✔ | ||
138 | 3690,0 | ✔ |
Примечание: центральная частота канала зависит от используемой полосы пропускания. Это объясняет тот факт, что центральная частота для разных каналов различается, если используются разные полосы частот сигнала.
Каналы и частоты WiFi 5 ГГц
По мере того, как диапазон 2,4 ГГц становится все более загруженным, многие пользователи предпочитают использовать диапазон ISM 5 ГГц для своих беспроводных локальных сетей, общих сетей Wi-Fi, домашних систем и т. Д. Это не только обеспечивает больший спектр, но и не так широко используется для других бытовых приборов, включая микроволновые печи и т. д. — микроволновые печи лучше всего работают на частоте около 2,4 ГГц из-за поглощения излучения продуктами питания пиковыми значениями около 2,4 ГГц. Соответственно, Wi-Fi 5 ГГц обычно вызывает меньше помех.
Многие маршрутизаторы Wi-Fi предоставляют возможность двухдиапазонной работы Wi-Fi с использованием этого диапазона и 2,4 ГГц, как и большинство смартфонов и других электронных устройств с поддержкой Wi-Fi. Использование частот в диапазоне 5 ГГц обычно обеспечивает более высокую скорость сети Wi-Fi.
Видно, что многие из каналов Wi-Fi 5 ГГц выходят за пределы принятого нелицензированного диапазона ISM, и в результате на работу на этих частотах накладываются различные ограничения.
Каналы и частоты WiFi 5 ГГц | ||||
---|---|---|---|---|
Номер канала | Частота МГц | Европа (ETSI) | Северная Америка (FCC) | Япония |
36 | 5180 | В помещении | ✔ | ✔ |
40 | 5200 | В помещении | ✔ | ✔ |
44 | 5220 | В помещении | ✔ | ✔ |
48 | 5240 | В помещении | ✔ | ✔ |
52 | 5260 | В помещении / DFS / TPC | ДФС | DFS / TPC |
56 | 5280 | В помещении / DFS / TPC | ДФС | DFS / TPC |
60 | 5300 | В помещении / DFS / TPC | ДФС | DFS / TPC |
64 | 5320 | В помещении / DFS / TPC | ДФС | DFS / TPC |
100 | 5500 | DFS / TPC | ДФС | DFS / TPC |
104 | 5520 | DFS / TPC | ДФС | DFS / TPC |
108 | 5540 | DFS / TPC | ДФС | DFS / TPC |
112 | 5560 | DFS / TPC | ДФС | DFS / TPC |
116 | 5580 | DFS / TPC | ДФС | DFS / TPC |
120 | 5600 | DFS / TPC | Нет доступа | DFS / TPC |
124 | 5620 | DFS / TPC | Нет доступа | DFS / TPC |
128 | 5640 | DFS / TPC | Нет доступа | DFS / TPC |
132 | 5660 | DFS / TPC | ДФС | DFS / TPC |
136 | 5680 | DFS / TPC | ДФС | DFS / TPC |
140 | 5700 | DFS / TPC | ДФС | DFS / TPC |
149 | 5745 | SRD | ✔ | Нет доступа |
153 | 5765 | SRD | ✔ | Нет доступа |
157 | 5785 | SRD | ✔ | Нет доступа |
161 | 5805 | SRD | ✔ | Нет доступа |
165 | 5825 | SRD | ✔ | Нет доступа |
Примечание 1: существуют дополнительные региональные различия для стран, включая Австралию, Бразилию, Китай, Израиль, Корею, Сингапур, Южную Африку, Турцию и т. Д.Кроме того, Япония имеет доступ к некоторым каналам ниже 5180 МГц.
Примечание 2: DFS = динамический выбор частоты; TPC = Контроль мощности передачи; SRD = Устройства малого радиуса действия Максимальная мощность 25 мВт.
Дополнительные диапазоны и частоты
В дополнение к более устоявшимся формам Wi-Fi разрабатываются новые форматы, которые будут использовать новые частоты и диапазоны. Технологии, использующие использование пустого пространства и т. Д., А также новые стандарты, использующие диапазоны, которые хорошо подходят для микроволнового диапазона и будут предоставлять гигабитные сети Wi-Fi.Эти технологии потребуют использования нового спектра для Wi-Fi.
Дополнительные диапазоны и частоты Wi-Fi | ||
---|---|---|
Технология Wi-Fi | Стандартный | Полосы частот |
Белый-Fi | 802.11af | 470-710 МГц |
СВЧ Wi-Fi | 802.11ad | Диапазон ISM 57,0–64,0 ГГц (возможны региональные различия) Каналы: 58,32, 60.48, 62,64 и 64,80 ГГц |
По мере того, как использование технологии Wi-Fi резко возросло, а скорость передачи данных значительно выросла, изменился и способ использования диапазонов.
Wi-Fi доступен во многих местах, дома, в офисе, в кафе и т. Д. Точки доступа Wi-Fi широко доступны, часто обеспечивая работу в двух диапазонах Wi-Fi — как 2,4 ГГц, так и 5 ГГц Wi-Fi для обеспечения возможности быстрая работа в любое время.
Первоначально диапазон 2,4 ГГц был предпочтительным для Wi-Fi, но поскольку стоимость технологии 5 ГГц снизилась, эта полоса стала использоваться гораздо шире, учитывая более широкую полосу пропускания канала.
Поскольку другие технологии Wi-Fi выходят на первый план, используются многие другие частоты. Другие нелицензированные диапазоны, которые ниже 1 ГГц, а также пустое пространство для White-Fi, использующее неиспользуемый телевизионный спектр, а также теперь все более высокие частоты в микроволновом диапазоне, где доступны еще большие полосы пропускания, но за счет меньшего расстояния.
Каждая технология Wi-Fi имеет свои собственные частоты или диапазоны, а иногда и другое использование доступных каналов Wi-Fi.
Темы беспроводного и проводного подключения:
Основы мобильной связи
2G GSM
3G UMTS
4G LTE
5G
Вай-фай
IEEE 802.15,4
Беспроводные телефоны DECT
NFC — связь ближнего поля
Основы сетевых технологий
Что такое облако
Ethernet
Серийные данные
USB
SigFox
Lora
VoIP
SDN
NFV
SD-WAN
Вернуться к беспроводной и проводной связи
.
Разработка двухдиапазонной беспроводной сети
Сравнение частот 2,4 и 5 ГГц
2,4 ГГц | 5 ГГц |
802.11b / г / п | 802.11a / n / ac |
Большая дальность (~ 300 футов) | Нижний диапазон закрытых помещений (~ 90 футов) |
Универсальная совместимость | Ограниченная совместимость (только устройства a / n / ac ) |
3 неперекрывающихся канала | 24 неперекрывающихся канала |
Перегружено Wi-Fi | Небольшая перегрузка Wi-Fi |
Из-за помех, не связанных с WiFi | Очень мало помех без Wi-Fi |
2.4 ГГц имеет три неперекрывающихся канала для работы, а 5 ГГц — 24. Нам не всегда удается
использовать все каналы 5 ГГц, но в целом он предлагает гораздо больше места.
Пропускная способность канала
Многие из нас знакомы с кабелем Ethernet, который имеет несколько витых пар медных проводов в одной
кабель.
Это обеспечивает двунаправленную или полнодуплексную связь . Сетевые устройства на обоих концах
кабель может разговаривать одновременно, как на двухполосном шоссе.
Только одно устройство за раз
WiFi — это полудуплекс , что означает, что на любом канале одновременно может разговаривать только одно устройство. Если
два устройства пытаются разговаривать одновременно, они перебивают друг друга. WiFi больше похож на однополосный
шоссе; трафик может идти только в одном направлении.
Поскольку WiFi является полудуплексным, только одно устройство WiFi может передавать данные по каналу одновременно.Чем больше WiFi-устройств мы
добавляем к каналу, тем больше мы уменьшаем возможности для каждого устройства говорить. Это известно как
Помехи в совмещенном канале .
Так как только одно устройство может разговаривать по каналу одновременно, нам нужно ограничить количество устройств на каждом
канал. Убедившись, что наш канал не слишком переполнен, мы можем уменьшить помехи в совмещенном канале.
Устройства передают данные с разной скоростью в зависимости от того, насколько они новы (N устройств могут разговаривать быстрее, чем B
устройств, например), насколько они близки к точке доступа и насколько шумна радиочастотная среда.
Медленным устройствам требуется больше времени для передачи того же объема данных. Нам нужно поддерживать высокую скорость передачи данных, чтобы заставить
клиенты говорят быстрее и экономят время, что также снижает помехи в совмещенном канале.
Мы можем уменьшить межканальные помехи с помощью:
- Отключение более медленных скоростей передачи данных, например 1, 2, 5,5 или 11 Мбит / с
- Создание меньших ячеек покрытия, поэтому меньшее количество устройств совместно используют канал
- Создание эффективных ячеек покрытия, где устройства всегда могут быстро разговаривать
- Предлагает оба 2.Поддержка 4 и 5 ГГц, что фактически удваивает доступную пропускную способность
- Осуществление эффективного планирования каналов, чтобы ячейки не работали по очереди
Планирование каналов
2,4 ГГц
Чтобы устранить межканальные помехи (также называемые межканальными), мы используем только каналы 1, 6 и 11 (1, 5, 9 и 13).
в
некоторые части мира).
Чтобы свести к минимуму взаимные помехи в совмещенном канале, точки доступа к одному каналу будут размещены как можно дальше друг от друга.
возможно.Это делит зону покрытия на более мелкие ячейки. В каждой маленькой ячейке всего несколько клиентов, и
ячейки с одним и тем же каналом не должны по очереди работать с другими ячейками.
Ячейки с одним и тем же каналом расположены как можно дальше друг от друга.
5 ГГц
В диапазоне 5 ГГц нет частичного перекрытия каналов 20 МГц. В дополнение к этому есть 24 неперекрывающихся
каналы, с которыми нужно работать, поэтому гораздо проще убедиться, что ячейки одного канала не соприкасаются.
Имея на выбор 24 неперекрывающихся канала, гораздо проще поддерживать связь ячеек одного канала.
Контрольный список проектирования двухдиапазонной сети
Действие | Результат |
Развернутые двухдиапазонные точки доступа |
|
Все 2.Радиостанции 4 ГГц на 1, 6 и 11 | Устранение помех по соседнему каналу |
Планируемые каналы 2,4 ГГц | Снижение межканальных помех |
Планируемые каналы 5 ГГц | Снижение межканальных помех |
Мощность 2,4 ГГц отключена для соответствия зоне покрытия 5 ГГц | Даже 2,4 и 5 ГГц покрытие |
Инструменты
Для проектирования и обслуживания двухдиапазонной беспроводной сети требуется хороший набор инструментов.К счастью, есть много разных
типы инструментов, из которых вы можете выбирать.
Инструмент для исследования площадки / виртуального планирования площадки
Инструмент Site Survey позволяет загружать план этажа здания и проходить через здание, чтобы выполнить
а
опрос. Результатом является карта покрытия или «тепловая карта», позволяющая просматривать покрытие сети и перекрытие ячеек.
Инструменты исследования площадки обычно используются для проверки сети после установки.
Инструмент виртуального планирования площадки (обычно встроенный в инструмент обследования площадки) позволяет рисовать типы стен на
изображение плана этажа и размещение виртуальных точек доступа. Затем инструмент рассчитает приблизительное покрытие в
здание. Инструменты планирования площадки используются для планирования сети до развертывания оборудования.
TamoGraph Site Survey в режиме RF Design, показывающий покрытие в офисе MetaGeek.
Анализатор спектра
Анализатор спектра, такой как Wi-Spy, представляет собой специальное оборудование, которое может визуализировать необработанную радиочастотную активность.Пока
обычно используется для обнаружения устройств, не поддерживающих Wi-Fi, которые могут вызывать помехи, анализатор спектра также отлично подходит
для
просмотр использования канала, чтобы увидеть, насколько он занят.
Wi-Spy + Chanalyzer показывает помехи от передатчиков без Wi-Fi
Анализатор пакетов
Анализатор пакетов, такой как Eye P.A., захватывает пакеты на канале и дает подробную разбивку о том, кто говорил быстро, а кто медленно.С анализатором пакетов, таким как Eye P.A., вы получите всю информацию, которая может вам понадобиться для обнаружения помех в совмещенном канале.
Следующий урок …
Устаревшие скорости передачи данных
.